Abstract
During water years (WY) 2013–2017, the U.S. Geological Survey, National Water-Quality Assessment (NAWQA) Project, sampled the National Water Quality Network – Rivers and Streams (NWQN) year-round and reported on 221 pesticides at 72 sites across the United States in agricultural, developed, and mixed land use watersheds. The Pesticide Toxicity Index (PTI) was used to estimate the potential chronic and acute toxicity to three taxonomic groups – fish, cladocerans, and benthic invertebrates. For invertebrates (either cladocerans, benthic invertebrates, or both), the maximum PTI score exceeded the predicted acute toxicity screening level at 18 of the 72 sites (25%) at some point during WY 2013–2017. The predicted toxicity of a single pesticide compound was found to overwhelm the toxicity of other pesticides in the mixtures after concentrations were toxicity weighted. For this study, about 71%, 72%, and 92% of the Fish-, Cladoceran-, and Benthic Invertebrate-PTI scores, respectively, had one pesticide compound primarily contributing to sample potential toxicity (>50%).There were 17 (13 insecticides, 2 herbicides, 1 fungicide, and 1 synergist) of the 221 pesticide compounds analyzed that were the primary drivers of potential toxicity in each water sample in which the PTI and TUmax (toxic unit score for the pesticide that makes the single largest contribution to the PTI) scores were above predicted chronic (>0.1) or acute (>1) toxicity levels for one of the three taxa. For cladocerans and benthic invertebrates, the drivers of predicted chronic (>0.1) and acute (>1) PTIs were mostly insecticides. For cladocerans, the pesticide compounds driving the PTI scores were bifenthrin, carbaryl, chlorpyrifos, diazinon, dichlorvos, dicrotophos, diflubenzuron, flubendiamide, and tebupirimfos. For benthic invertebrates, atrazine (an herbicide), as well as the insecticides – bifenthrin, carbaryl, carbofuran, chlorpyrifos, diazinon, dichlorvos, fipronil, imidacloprid, and methamidophos – were the drivers of predicted toxicity. For fish, there were three pesticide types that contributed the most to predicted chronic (>0.1) PTIs – acetochlor, an herbicide; carbendazim, a fungicide degradate; and piperonylbutoxide, a synergist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.