Abstract
Establishing reliable correspondences by a deep neural network is an important task in computer vision, and it generally requires permutation-equivariant architecture and rich contextual information. In this paper, we design a Permutation-Equivariant Split Attention Network (called PESA-Net), to gather rich contextual information for the feature matching task. Specifically, we propose a novel “Split–Squeeze–Excitation–Union” (SSEU) module. The SSEU module not only generates multiple paths to exploit the geometrical context of putative correspondences from different aspects, but also adaptively captures channel-wise global information by explicitly modeling the interdependencies between the channels of features. In addition, we further construct a block by fusing the SSEU module, Multi-Layer Perceptron and some normalizations. The proposed PESA-Net is able to effectively infer the probabilities of correspondences being inliers or outliers and simultaneously recover the relative pose by essential matrix. Experimental results demonstrate that the proposed PESA-Net relative surpasses state-of-the-art approaches for pose estimation and outlier rejection on both outdoor scenes and indoor scenes (i.e., YFCC100M and SUN3D). Source codes: https://github.com/x-gb/PESA-Net.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.