Abstract

We present the first application of the neutral cluster beam deposition (NCBD) method to prepare n-type organic thin-film transistors with a top-contact structure based on N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13). Systematic analysis was carried out to examine the effects of surface passivation and thermal post-treatment on the morphology and crystallinity of P13 active layers and device performance, together with operational stability as a function of time. The high room-temperature field-effect mobility of 0.58 cm 2/Vs for the thermally post-treated devices was obtained under ambient conditions. The comparative study of the transport mechanisms responsible for conduction of the electron carriers over a temperature range of 10–300 K indicated that surface modification and thermal post-treatment decrease total trap density and activation energy for carrier transport by reducing structural disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.