Abstract

Splitting the five and seven-membered rings of azulene and embedding them separately into a conjugated backbone provides azulene-like polycyclic aromatic hydrocarbons (PAHs), which are of great interest in quantum and material chemistry. However, the synthetic accessibility poses a significant challenge. In this study, we present the synthesis of a novel azulene-like PAH, Pery-57, which can be viewed as the integration of a perylene framework into the split azulene. The compact structure of Pery-57 displays several intriguing characteristics, including NIR II absorption at 1200 nm, a substantial dipole moment of 3.5 D, and head-to-tail alternating columnar packing. Furthermore, Pery-57 exhibits remarkable redox properties. The cationic radical Pery-57•+ readily captures a hydrogen atom. Variable-temperature NMR (VT-NMR) and variable-temperature EPR (VT-EPR) studies reveal that the dianion Pery-572- possesses an open-shell singlet ground state and demonstrates significant global anti-aromaticity. The dication Pery-572+ is also predicted to exhibit diradical character. Despite bearing three bulky substituents, Pery-57 displays p-type transport characteristics with a mobility of 0.03 cm2 V-1 s-1, attributed to its unique azulene-like structure. Overall, this work directs interest in azulene-like PAHs, a unique member of nonalternant PAHs showcasing exceptional properties and applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call