Abstract

AbstractThe origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho‐methoxy group (NM) at its bay positions (PBI‐2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol−1) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co‐planarization of the different aromatic units, resulting in delocalization of the π‐electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co‐planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H‐bond‐driven co‐planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.