Abstract

The organic photocatalyst, perylene, was used to mediate photoinduced electron transfer (PET) reversible addition-fragmentation chain transfer polymerization (RAFT) of methyl methhacrylate (MMA) under light irradiation in N,N-dimethylformamide (DMF) at 25°C with 4-cyanopentanoic acid dithiobenzoate (CPADB) as chain transfer agent (CTA). Kinetic studies confirmed that the polymerization obeyed the first order kinetic m'odel. The production of PMMAs with a good control of molecular weights (Mn,GPC) and narrow polymer molecular weight distribution (Mw/Mn) were obtained. It is found that well-controlled PET RAFT polymerization of MMA can be manipulated even with the amount of perylene decreasing to ppm level. No polymer was obtained in the absence of light irradiation, implying that the model of PET RAFT polymerization of MMA is an ideal light “on”-“off” switchable system. Furthermore, the speed of PET RAFT polymerization of MMA was also finely tunable by the external light irradiation intensity. The resultant PMMA macro-CTA was characterized by 1H nuclear magnetic resonance spectrum (1H NMR) and gel permeation chromatography (GPC). The accessibility of the high end group fidelity was further demonstrated by chain extension experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.