Abstract
Because pervious concrete pavement (PCP) has a porous structure and can percolate water to an underground layer, it has been proposed as a stormwater best management practice (BMP), an environmentally friendly product, and sustainable paving materials. This porosity makes PCP susceptible to freeze-thaw damage in cold climates. Therefore, PCP has not been widely applied and investigated in such a climate. Long-term performance data are rarely available, and no performance model has been developed for PCP to date. The main objective of this research is to integrate expert knowledge (using the Markov-chain process) and experimental data (PCP field investigations) to build a performance model for PCP through incorporation of the Bayesian technique. The combination of these sources of data is an efficient and effective approach to build a performance model for a new type of pavement, such as PCP, which has not had a long-term performance database. As a result, a robust linear performance model is developed and applied to predict the service life of PCP. The service life of PCP is estimated to be approximately nine years using the developed performance model. In general, the expert knowledge leads to more conservative results rather than experimental data. DOI: 10.1061/(ASCE)TE.1943-5436.0000363. © 2012 American Society of Civil Engineers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.