Abstract

We use the Springer correspondence to give a partial characterization of the irreducible representations which appear in the Tymoczko dot action of the Weyl group on the cohomology ring of a regular semisimple Hessenberg variety. In type A, we apply these techniques to prove that all irreducible summands which appear in the pushforward of the constant sheaf on the universal Hessenberg family have full support. We also observe that the recent results of Brosnan and Chow, which apply the local invariant cycle theorem to the family of regular Hessenberg varieties in type A, extend to arbitrary Lie type. We use this extension to prove that regular Hessenberg varieties, though not necessarily smooth, always have the “Kähler package.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.