Abstract

Perverse schobers are conjectural categorical analogs of perverse sheaves. We show that such structures appear naturally in Homological Minimal Model Program which studies the effect of birational transformations such as flops, on the coherent derived categories. More precisely, the flop data are analogous to hyperbolic stalks of a perverse sheaf. In the first part of the paper we study schober-type diagrams of categories corresponding to flops of relative dimension 1, in particular we determine the categorical analogs of the (compactly supported) cohomology with coefficients in such schobers. In the second part we consider the example of a “web of flops” provided by the Grothendieck resolution associated to a reductive Lie algebra $$\mathfrak {g}$$ and study the corresponding schober-type diagram. For $$\mathfrak {g}={\mathfrak {s}\mathfrak {l}}_3$$ we relate this diagram to the classical space of complete triangles studied by Schubert, Semple and others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.