Abstract

Known protein coding gene exons compose less than 3% of the human genome. The remaining 97% is largely uncharted territory, with only a small fraction characterized. The recent observation of transcription in this intergenic territory has stimulated debate about the extent of intergenic transcription and whether these intergenic RNAs are functional. Here we directly observed with a large set of RNA-seq data covering a wide array of human tissue types that the majority of the genome is indeed transcribed, corroborating recent observations by the ENCODE project. Furthermore, using de novo transcriptome assembly of this RNA-seq data, we found that intergenic regions encode far more long intergenic noncoding RNAs (lincRNAs) than previously described, helping to resolve the discrepancy between the vast amount of observed intergenic transcription and the limited number of previously known lincRNAs. In total, we identified tens of thousands of putative lincRNAs expressed at a minimum of one copy per cell, significantly expanding upon prior lincRNA annotation sets. These lincRNAs are specifically regulated and conserved rather than being the product of transcriptional noise. In addition, lincRNAs are strongly enriched for trait-associated SNPs suggesting a new mechanism by which intergenic trait-associated regions may function. These findings will enable the discovery and interrogation of novel intergenic functional elements.

Highlights

  • A large fraction of the human genome consists of intergenic sequence

  • Much of the human genome is composed of intergenic sequence, the regions between genes

  • Intergenic sequence was once thought to be transcriptionally silent ‘‘junk DNA,’’ but it has recently become apparent that intergenic regions can be transcribed

Read more

Summary

Introduction

A large fraction of the human genome consists of intergenic sequence. Once referred to as ‘‘junk DNA’’, it is clear that functional elements exist in intergenic regions. Genome wide association studies have revealed that approximately half of all disease and trait-associated genomic regions are intergenic [1] While some of these regions may function solely as DNA elements, it is known that intergenic regions can be transcribed [2,3,4,5,6,7], and a growing list of functional noncoding RNA genes within intergenic regions has emerged [8]. Overcoming these prior shortcomings, the ENCODE project used RNA-seq analysis in combination with other technologies to profile 15 human cell lines, providing evidence for transcription across 83.7% of the human genome and firmly establishing the reality of pervasive transcription [14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.