7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1103/physreve.103.012606
Copy DOIJournal: Physical Review E | Publication Date: Jan 13, 2021 |
Citations: 5 | License type: other-oa |
Understanding the drift motion and dynamical locking of crystalline clusters on patterned substrates is important for the diffusion and manipulation of nano- and microscale objects on surfaces. In a previous work, we studied the orientational and directional locking of colloidal two-dimensional clusters with triangular structure driven across a triangular substrate lattice. Here we show with experiments and simulations that such locking features arise for clusters with arbitrary lattice structure sliding across arbitrary regular substrates. Similar to triangular-triangular contacts, orientational and directional locking are strongly correlated via the real- and reciprocal-space Moiré patterns of the contacting surfaces. Due to the different symmetries of the surfaces in contact, however, the relation between the locking orientation and the locking direction becomes more complicated compared to interfaces composed of identical lattice symmetries. We provide a generalized formalism which describes the relation between the locking orientation and locking direction with arbitrary lattice symmetries.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.