Abstract

Membrane-based separation of organic/organic mixtures is of great importance in the chemical and petrochemical industries, but remains very challenging owing to the harsh working conditions. Herein, ultrathin and chemically stable Bis(triethoxysilyl)acetylene (BTESA)-derived organosilica membranes were reproducibly prepared, and for the first time they were utilized in the pervaporation separation of methanol/organic azeotropes. The as-prepared BTESA membranes exhibited exceptional pervaporation performance in a 10 wt%/90 wt% methanol/dimethyl carbonate (DMC) mixture, and showed a high separation factor of approximately 120 with a permeation flux of 2–4 kg m-2 h-1 at 50 °C. This impressive performance was primarily the result of the preferential sorption of methanol and the efficient size sieving of DMC. In addition, the effects of feed concentration and temperature on methanol/DMC pervaporation performance were thoroughly investigated. Importantly, a generalized solution-diffusion model successfully described the pervaporation performance of BTESA membranes, and the usefulness of this model was further confirmed via the pervaporation of methanol/methyl acetate and methanol/methyl tert-butyl ether (MTBE) mixtures. This work demonstrates the great potential of organosilica membranes for high-performance organic/organic pervaporation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.