Abstract

AbstractThe separation of ethanol/ethyl‐tertiobutylether mixtures by pervaporation was studied with new membranes prepared from N‐vinyl‐pyrrolidinone (NVP) and N‐[3‐(trimethylamoniopropyl)]methacrylamidemethylsulfate) (TMA). The pervaporation results showed that highly EtOH selective membranes could be obtained from PVP blends and from pyrrolidinone‐based crosslinked copolymers. The influences of the polymer blend composition and the role of the polymer microstructures on the membrane properties were investigated. Whatever the exact NVP/TMA composition used, the membranes strongly favored the pervaporation of ethanol. The ethanol selectivity was higher for the lower PVP/TMA ratio. On the one hand, these results were ascribed to the high pyrrolidinone residues content, which is responsible of the enhanced EtOH sorption affinity. The observed permeation selectivity was in agreement with the swelling data also recorded with the different polymers, showing higher affinity for ethanol with PVP‐enriched materials compared with TMA ones. This is a direct consequence of the Lewis base feature of pyrrolidinone sites towards EtOH molecules. On the other hand, the TMA residues improved the overall stability and selectivity of the membranes thanks to crosslinking reactions, which were induced by thermal treatment. A close comparison made between polymer blend and copolymer pervaporation results helped to clarify the TMA role of the membrane transport properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3622–3630, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.