Abstract

AbstractThe pervaporation (PV) performance of crosslinked poly(dimethylsiloxane) dimethylmethacrylate (PDMSDMMA) membranes for an aqueous solution of various hydrocarbons was studied using sorption–diffusion theory. Three chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloromethane) and three aromatic hydrocarbons (benzene, chlorobenzene, and toluene) were used as the permeants. When aqueous solutions of 0.05 wt % hydrocarbon were permeated through the crosslinked PDMSDMMA membranes, they showed high hydrocarbon/water selectivity and permeability during PV. The hydrocarbon/water selectivity of the crosslinked PDMSDMMA membranes was significantly dependent upon the permeants; in particular, chloroform removed the hydrocarbons most efficiently in this study. The results of the temperature dependence of the PV performance and hydrocarbon absorption into the membrane revealed that the difference in hydrocarbon/water selectivity for various aqueous solutions of hydrocarbons during PV depended significantly on the molar volume and diameter of the hydrocarbons. The permeation and removal mechanism of hydrocarbons from water through crosslinked PDMSDMMA membranes can be explained by a qualitative model based on the diffusion jump model. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2079–2090, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.