Abstract

Abstract Acetic acid dehydration is significant in chemical industry. Pervaporation has attracted increasing attention due to its low energy consumption and environmentally friendly process. However, there is still lack of efficient membrane materials for the pervaporation separation of acetic acid/water mixtures. Therefore, developing new material to prepare pervaporation membrane is currently the main task. In this study, an acid stable Zr-MOF NH2-UiO-66 was synthesized and incorporated into poly(ethyleneimine) (PEI) to form mixed matrix membranes (MMMs) for separating acetic acid/water mixtures. The NH2-UiO-66/PEI MMMs were deposited on the surface of NaA zeolite tubular substrate to form composite membranes using dip-coating method. The morphologies and structures of the particles and composite membranes were characterized by SEM, EDX, FTIR and contact angle. The effects of membrane preparation conditions on the separation performance were investigated. The results indicated that the NH2-UiO-66/PEI composite membranes showed good acetic acid dehydration behavior, because of the high porosity and hydrophilicity of the particles. Moreover, the particles had good compatibility with polymer and strong combination with substrate. Therefore, this study may provide a new material and facile strategy for preparing composite membrane in the separation of acetic acid/water mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call