Abstract

Dexmedetomidine, a highly selective and potent agonist at alpha-2 adrenoceptors, produces a hypnotic-anesthetic action in rats. The mechanism for this response may involve an inhibitory G-protein and increased conductance through a potassium channel. To investigate this, the effects of pertussis toxin, a specific inactivator of inhibitory G-proteins, and 4-aminopyridine, a blocker of potassium channels, on the hypnotic-anesthetic response to dexmedetomidine were studied in rats. Pertussis toxin and 4-aminopyridine both decreased the hypnotic-anesthetic action of dexmedetomidine in a dose-dependent fashion. To preclude the possibility that pertussis toxin and 4-aminopyridine attenuated the hypnotic-anesthetic action of dexmedetomidine via indirect central nervous system excitation, the effects of pertussis toxin and 4-aminopyridine on the hypnotic-anesthetic action of pentobarbital also were assessed. Pentobarbital-induced hypnosis was not attenuated by either treatment. These results suggest that the receptor-effector mechanism for the hypnotic-anesthetic action of dexmedetomidine involves an inhibitory G-protein and increased conductance through a potassium channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.