Abstract

Pertussis toxin (PTX) is used to promote development of autoimmune diseases. The mechanism(s) are still incompletely understood. We dissected the innate and adaptive immune responses in a PTX-dependent model of autoimmune retinal disease, experimental autoimmune uveoretinitis (EAU), a Th1-driven disease of the neural retina elicited in F344 rats with a peptide derived from the retinal antigen interphotoreceptor retinoid binding protein (IRBP). Our results showed that optimal doses of PTX led to strongly increased innate cytokine responses, followed by enhanced adaptive Th1 immunity and disease. At supraoptimal doses of PTX, EAU was suppressed, the animals exhibited persistent lymphocytosis and had an inhibited chemotactic response to chemokines. We suggest that the suppressive effect of PTX at supraoptimal doses is due to inhibition of lymphocyte emigration from the blood into the target tissue, secondary to inhibition of Gi-protein-coupled chemokine receptor signaling, that persists into the effector phase of disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.