Abstract

We construct a neutrino mass matrix Mν via a seesaw mechanism with perturbed invariant under a cyclic permutation by introducing a parameter δ into the diagonal elements of Mν with the assumption that trace of the perturbed Mν is equal to trace of the unperturbed Mν. We found that the perturbed neutrino mass matrices Mν can predict the mass-squared difference [Formula: see text] with the possible hierarchy of neutrino mass is normal or inverted hierarchy. By using the advantages of the mass-squared differences and mixing parameters data from neutrino oscillation experiments, we then have neutrino masses in inverted hierarchy with masses: |m1| = 0.101023 eV , |m2| = 0.101428 eV and |m3| = 0.084413 eV .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call