Abstract
We obtain new Fourier interpolation and uniqueness results in all dimensions, extending methods and results by the first author and M. Sousa [11] and the second author [12]. We show that the only Schwartz function which, together with its Fourier transform, vanishes on surfaces close to the origin-centered spheres whose radii are square roots of integers, is the zero function. In the radial case, these surfaces are spheres with perturbed radii, while in the non-radial case, they can be graphs of continuous functions over the sphere. As an application, we translate our perturbed Fourier uniqueness results to perturbed Heisenberg uniqueness for the hyperbola, using the interrelation between these fields introduced and studied by Bakan, Hedenmalm, Montes-Rodriguez, Radchenko and Viazovska [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.