Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.