Abstract

We propose a new method to tackle the integrability problem for evolutionary differential–difference equations of arbitrary order. It enables us to produce necessary integrability conditions, to determine whether a given equation is integrable or not, and to advance in classification of integrable equations. We define and develop symbolic representation for the difference polynomial ring, difference operators and formal series. In order to formulate necessary integrability conditions, we introduce a novel quasi-local extension of the difference ring. We apply the developed formalism to solve the classification problem of integrable equations for anti-symmetric quasi-linear equations of order (-3,3) and produce a list of 17 equations satisfying the necessary integrability conditions. For every equation from the list we present an infinite family of integrable higher order relatives. Some of the equations obtained are new.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.