Abstract

We investigate, in the framework of perturbation theory at finite N s , the effectiveness of improved gauge actions in suppressing the chiral violations of domain-wall fermions. Our calculations show substantial reductions of the residual mass when it is compared at the same value of the gauge coupling, the largest suppression being obtained when the DBW2 action is used. Similar effects can also be observed for a power-divergent mixing coefficient which is chirally suppressed. No significant reduction instead can be seen in the case of the difference between the vector and axial-vector renormalization constants when improved gauge actions are used in place of the plaquette action. We also find that one-loop perturbation theory is not an adequate tool to carry out comparisons at the same energy scale (of about 2 GeV), and in fact in this case even an enhancement of the chiral violations is frequently obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call