Abstract
Spin-orbit splittings for (2)Pi states are calculated within coupled-cluster (CC) theory via first-order degenerate perturbation theory. Using the equation-of-motion CC variant for ionization potentials (EOMIP-CC), the two components of the considered (2)Pi state are treated in a balanced way by generating both radical states via annihilation of one electron out of the CC wave function of the corresponding anion. We report on the implementation of the described approach within the CC singles and doubles approximation. To ensure computational efficiency, an atomic mean-field approximation for the spin-orbit integrals is used, resulting in a formulation in terms of one-electron transition-density matrices. Calculations for XH radicals (X=O, S, Se) lead to satisfactory agreement with experiment. For (2)Pi systems that within an EOMIP-CC treatment can only be reached from a triplet reference state (e.g., CF and O(2) (+)) the influence of spin contamination is found to be negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.