Abstract

With the aim of developing linear-scaling methods, we discuss perturbative approaches designed to avoid diagonalization of large matrices. Approximate molecular orbitals can be corrected by perturbation theory, in course of which the Laplace transformation technique proposed originally by Almlof facilitates linear scaling. The first order density matrix P corresponding to a one-electron problem can be obtained from an iterative formula which preserves the trace and the idempotency of P so that no purification procedures are needed. For systems where P is sparse, the procedure leads to a linear scaling method. The algorithm is useful in course of geometry optimization or self-consistent procedures, since matrix P of the previous step can be used to initialize the density matrix iteration at the next step. Electron correlation methods based on the Hartree-Fock density matrix, without making reference to molecular orbitals are commented on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.