Abstract

In quantum physical theories, interactions in a system of particles are commonly understood as perturbations to certain observables, including the Hamiltonian, of the corresponding interaction-free system. The manner in which observables undergo perturbations is subject to constraints imposed by the overall symmetries that the interacting system is expected to obey. Primary among these are the spacetime symmetries encoded by the unitary representations of the Galilei group and Poincaré group for the non-relativistic and relativistic systems, respectively. In this light, interactions can be more generally viewed as perturbations to unitary representations of connected Lie groups, including the non-compact groups of spacetime symmetry transformations. In this paper, we present a simple systematic procedure for introducing perturbations to (infinite dimensional) unitary representations of finite dimensional connected Lie groups. We discuss applications to relativistic and non-relativistic particle systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.