Abstract
We consider perturbations of the harmonic map equation in the case where the target manifold is a closed Riemannian manifold of nonpositive sectional curvature. For any semilinear and, under some extra conditions, quasilinear perturbation, the space of classical solutions within a homotopy class is proved to be compact. An important ingredient for our analysis is a new inequality for maps in a given homotopy class which can be viewed as a version of the Poincar e in
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.