Abstract
We study a class of three degree of freedom (3-DOF) Hamiltonian systems that share certain characteristics with the 2-DOF Hénon–Heiles Hamiltonian. Our systems represent a 1 : 1 : 1 resonant three-oscillator whose principal nonlinear perturbation is the cubic potential term xyz with tetrahedral symmetry. After normalizing and reducing the 1 : 1 : 1 oscillator symmetry, we show that near the limit of linearization all our systems can be described as a one-parametric family. Such reduced systems have been suggested earlier by Hecht (1960 J. Mol. Spectrosc. 5 355) and later by Patterson (1985 J. Chem. Phys. 83 4618) to model triply degenerate vibrations of tetrahedral molecules. We describe relative equilibria (RE) of these systems, classify all qualitatively different family members, and discuss bifurcations of RE involved in the transitions from one region of regular parameter values to the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.