Abstract

We develop a perturbation theory formalism for the theory of the Fermi surface in a Fermi liquid of particles interacting via a bounded short-range repulsive pair potential. The formalism is based on the renormalization group and provides a formal expansion of the large-distance Schwinger functions in terms of a family of running couplings consisting of one- and two-body quasiparticle potentials. The flow of the running couplings is described in terms of a beta function, which is studied to all orders of perturbation theory and shown to obey, in thenth order,n! bounds. The flow equations are written in general dimensiond⩾1 for the spinless case (for simplicity). The picture that emerges is that on a large scale the system looks like a system of fermions interacting via aδ-like interaction potential (i.e., a potential approaching 0 everywhere except at the origin, where it diverges, although keeping the integral bounded); the theory is not asymptotically free in the usual sense and the freedom mechanism is thus more delicate than usual: the technical problem of dealing with unbounded effective potentials is solved by introducing a mathematically precise notion ofquasiparticles, which turn out to be natural objects with finite interaction even when the physical potential diverges as a deltalike function. A remarkable kind of gauge symmetry is associated with the quasiparticles. To substantiate the analogy with the quasiparticle theory we discuss the mean field theory using our notion of quasiparticles: the resulting self-consistency relations are closely reminiscent of those of the BCS model. The formalism seems suited for a joint theory of normal states of Fermi liquids and of BCS states: the first are associated with the trivial fixed point of our flow or with nearby nontrivial fixed points (or invariant sets) and the second may naturally correspond to really nontrivial fixed points (which may nevertheless turn out to be accessible to analysis because the BCS state is a quasi free state, hence quite simple, unlike the nontrivial fixed points of field theory). Thed=1 case is deeply different from thed> 1 case, for our spinless fermions: we can treat it essentially completely for small coupling. The system is not asymptotically free and presents anomalous renormalization group flow with a vanishing beta function, and the discontinuity of the occupation number at the Fermi surface is smoothed by the interaction (remaining singular with a coupling-dependent singularity of power type with exponent identified with the anomalous dimension). Finally, we present a heuristic discussion of the theory for the flow of the running coupling constants in spinlessd> 1 systems: their structure is simplified further and the relevant part of the running interaction is precisely the interaction between pairs of quasiparticles which we identify with the Cooper pairs of superconductivity. The formal perturbation theory seems to have a chance to work only if the interaction between the Cooper pairs is repulsive: and to second order we show that in the spin-0 case this happens if the physical potential is repulsive. Our results indicate the possibility of the existence of a normal Fermi surface only if the interaction is repulsive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call