Abstract

Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent interest in approximate Markov chain Monte Carlo (MCMC) methods in the analysis of big data sets. By using an approach based on Lyapunov functions, we provide estimates for geometrically ergodic Markov chains under weak assumptions. In an autoregressive model, our bounds cannot be improved in general. We illustrate our theory by showing quantitative estimates for approximate versions of two prominent MCMC algorithms, the Metropolis-Hastings and stochastic Langevin algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.