Abstract

We derive a perturbative approach to study, in the large inertia limit, the dynamics of solid particles in a smooth, incompressible and finite-time correlated random velocity field. We carry on an expansion in powers of the inverse square root of the Stokes number, defined as the ratio of the relaxation time for the particle velocities and the correlation time of the velocity field. We describe in this limit the residual concentration fluctuations of the particle suspension, and determine the contribution to the collision velocity statistics produced by clustering. For both concentration fluctuations and collision velocities, we analyze the differences with the compressible one-dimensional case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call