Abstract

A perturbation theory for the forward problem of optical transport in turbid media is developed. It is applicable to media with scattering and absorption in homogeneties and steady-state and modulated light. Absorbing perturbations can be described by a volume distribution of virtual sources that primarily causes a monopole perturbation light field. Scattering objects have an additional contribution that, in the limiting case of sharply bounded objects, is represented by a surface distribution of virtual sources and causes a dipolelike perturbation pattern. Using the concept of virtual sources, we discuss a possible ambiguity between the perturbations from scattering and absorbing inhomogeneities and the implications for the source-detector placement in inverse problems. We show that the surface effects due to sharp boundaries of scattering objects pose both a numerical problem and a chance to improve the resolution of inverse algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.