Abstract

We investigate the spin and charge susceptibilities of the two-dimensional Hubbard model based upon the perturbative calculation in the strength of correlation $U$. For $U$ comparable to a bare bandwidth, the charge susceptibility decreases near the half-filling as hole-doping approaches zero. This behavior suggesting the precursor of the Mott-Hubbard gap formation cannot be obtained without the vertex corrections beyond the random phase approximation. In the low-temperature region, the spin susceptibility deviates from the Curie-Weiss-like law and finally turns to decrease with the decrease of temperature. This spin-gap-like behavior is originating from the van Hove singularity in the density of states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.