Abstract

In this review I present a method to estimate the large order behavior of perturbation theory in quantum mechanics and field theory. The basic idea, due to Lipatov, is to relate the large order behavior to (in general complex) instanton contributions to the path integral representation of Green's functions. I explain the method first in the case of a simple integral and of the anharmonic oscillator and recover the results of Bender and Wu. I apply it then to the φ 4 field theory. I study general potentials and boson field theories. I show, following Parisi, how the method can be generalized to theories with fermions. Finally I outline the implications of these results for the summability of the series. In particular I explain a method to sum divergent series based on a Borel transformation. In a last section I compare the larger order behavior predictions to actual series calculation. I present also some numerical examples of series summation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.