Abstract

Hsp70 molecular chaperones play an important role in maintaining cellular homeostasis, and are implicated in a wide array of cellular processes, including protein recovery from aggregates, cross-membrane protein translocation, and protein biogenesis. Hsp70 consists of two domains, a nucleotide binding domain (NBD) and a substrate binding domain (SBD), each of which communicates via an allosteric mechanism such that the protein interconverts between two functional states, an ATP-bound open conformation and an ADP-bound closed conformation. The exact mechanism for interstate conversion is not as yet fully understood. However, the ligand-bound states of the NBD and SBD as well as interactions with cochaperones such as DnaJ and nucleotide exchange factor are thought to play crucial regulatory roles. In this study, we apply the perturbation-response scanning (PRS) method in combination with molecular dynamics simulations as a computational tool for the identification of allosteric hot residues in the large multidomain Hsp70 protein. We find evidence in support of the hypothesis that substrate binding triggers ATP hydrolysis and that the ADP-substrate complex favors interstate conversion to the closed state. Furthermore, our data are in agreement with the proposal that there is an allosterically active intermediate state between the open and closed states and vice versa, as we find evidence that ATP binding to the closed structure and peptide binding to the open structure allosterically "activate" the respective complexes. We conclude our analysis by showing how our PRS data fit the current opinion on the Hsp70 conformational cycle and present several allosteric hot residues that may provide a platform for further studies to gain additional insight into Hsp70 allostery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call