Abstract
Understanding the phase behavior of block copolymer/ionic liquid mixtures is an important step toward their implementation in commercial devices. Here we report a high throughput and systematic small-angle X-ray scattering study of the lyotropic phase behavior of a series of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymers in the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (EMIM Tf2N). The ionic liquid induces disorder–order transitions for a number of low molecular weight systems, and the onset points of these transitions are used to calculate the dependence of the effective Flory–Huggins interaction parameter (χeff) on the ionic liquid concentration. This enabled construction of an experimental phase diagram, which reveals that after taking volumetric swelling into account, at higher ionic liquid concentrations, the experimental phase boundaries shift significantly when compared to theoretical calculations for block copolymer melts. It is also demons...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.