Abstract

This paper is concerned with the Hermitian definite generalized eigenvalue problem for block diagonal matrices and . Both and are Hermitian, and is positive definite. Bounds on how its eigenvalues vary when and are perturbed by Hermitian matrices are established. These bounds are generally of linear order with respect to the perturbations in the diagonal blocks and of quadratic order with respect to the perturbations in the off-diagonal blocks. The results for the case of no perturbations in the diagonal blocks can be used to bound the changes of eigenvalues of a Hermitian definite generalized eigenvalue problem after its off-diagonal blocks are dropped, a situation that occurs frequently in eigenvalue computations. The presented results extend those of Li and Li [Linear Algebra Appl., 395 (2005), pp. 183–190]. It was noted by Stewart and Sun [Matrix Perturbation Theory, Academic Press, Boston, 1990] that different copies of a multiple eigenvalue may exhibit quite different sensitivities towards perturbations. We establish bounds to reflect that feature, too. We also derive quadratic eigenvalue bounds for diagonalizable non-Hermitian pencils subject to off-diagonal perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.