Abstract

BackgroundGut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.ResultsWe investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens. Perturbation was induced by administering 0.8 mg amoxicillin per bird per day) via the drinking water for a period of 24 h. Effects of the perturbation were measured by 16S rRNA profiling of the microbiome and whole genome gene expression analysis. In parallel to what has been observed for other animal species, we hypothesized that such an intervention may have negative impact on immune development.Trends were observed in changes of the composition and diversity of the microbiome when comparing antibiotic treated birds with their controls. in the jejunum, the expression of numerous genes changed, which potentially leads to changes in biological activities of the small intestinal mucosa. Validation of the predicted functional changes was performed by staining immune cells in the small intestinal mucosa and a reduction in the number of macrophage-like (KUL01+) cells was observed due to a direct or indirect effect of the antibiotic treatment. We provide evidence that a short, early life antibiotic treatment affects both the intestinal microbiota (temporarily) and mucosal gene expression over a period of 2 weeks.ConclusionThese results underscore the importance of early life microbial colonization of the gut in relation to immune development and the necessity to explore the capabilities of a variety of early life dietary and/or environmental factors to modulate the programming for immune competence in broilers.

Highlights

  • Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors

  • In parallel to what has been observed for other animal species, we hypothesized that an early life intervention with an antibiotic may have negative effects on immune development [2, 15, 18, 19]

  • Short term oral perturbation with an antibiotic during early life of chickens affects microbial colonization and intestinal immune development over a period of 2 weeks. This was shown as a trend at the microbiota level, but significant at the gene expression level in the mucosa of the small intestine

Read more

Summary

Introduction

Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa. Nutrient intake and immune homeostasis are important aspects for chicken health These aspects are influenced by many different factors, for instance by the composition and diversity of the resident intestinal microbial population, by feed composition and by host genetics [1, 2]. Dietary interventions at young age, such as the usage of (pre)starter feeds, prebiotics, probiotics and antibiotics, are regarded to affect the crosstalk between microbiota and host mucosal cells in the intestinal tract, which may result in a change of immune development [8,9,10,11]. Based on spatio-temporal gene expression profiles, the following sequential order for immune related processes have been reported: 1) innate development and influx of immune cells; 2) immune differentiation and specialization; and 3) maturation and immune regulation [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call