Abstract

Endothelial hyperpermeability is a hallmark of an inflammatory reaction and contributes to tissue damage in severe infections. Loss of endothelial cell-cell adhesion leads to intercellular gap formation allowing paracellular fluid flux. Although Staphylococcus aureus alpha-toxin significantly contributed to staphylococci disease, little is known about its mechanism of endothelial hyperpermeability induction. Here, we demonstrate that in a model of isolated perfused rat ileum discontinuation of capillary vascular-endothelial-cadherin (VE-cadherin) was observed after bolus application of S. aureus alpha-toxin being inhibited by the endogenous peptide adrenomedullin (ADM). In vitro, alpha-toxin exposure induced loss of immunoreactivity of VE-cadherin and occludin in human cultured umbilical vein endothelial cells. Likewise, ADM blocked alpha-toxin-related junctional protein disappearance from intercellular sites. Additionally, cyclic AMP elevation was shown to stabilize endothelial barrier function after alpha-toxin application. Although no RhoA activation was noted after endothelial alpha-toxin exposure, inhibition of Rho kinase and myosin light chain kinase blocked loss of immunoreactivity of VE-cadherin and occludin as well as intercellular gap formation. In summary, stabilization of endothelial junctional integrity as indicated by interendothelial immunostaining might be an interesting approach to stabilize endothelial barrier function in severe S. aureus infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.