Abstract

We study the sensitivity of algebraic eigenvalue problems associated with matrices arising from linearization and discretization of the steady-state Navier--Stokes equations. In particular, for several choices of preconditioners applied to the system of discrete equations we derive upper bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size. The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the inverse of the mesh size and that scaling can be used to decrease the sensitivity in some cases. Experimental results supplement these results and confirm the relatively mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller than the analysis suggests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.