Abstract

Perturbation of diminutive solar irradiance and extreme semiconductor temperature on the responsive; output current and output voltage shows the stimulus effect of diminutive solar irradiance and extreme semiconductor temperature on the responsive. This could be adduced by carrying out direct and relative perturbation of the responsive with respect to diminutive solar irradiance and extreme semiconductor temperature. The upshot from the perturbation of the output current and output voltage reveals that output current is strongly influenced by the perturbation of diminutive solar irradiance whereas the output voltage is intensely influenced by the perturbation of extreme semiconductor temperature. Analytically, crystalline and thin film semiconductors proved to be rugged under the extreme semiconductor temperature and diminutive solar irradiance sequel to appreciable magnitude of their output current and output voltage gradients; 0.085060718 A/K, 0.044481542 V/K, 0.006285375 Am2/W and 3.504405002 Vm2/W, respectively. Furthermore, the relative perturbation of output current and output voltage gave rise to important thermal characteristics of the fluid surrounding the semiconductors investigated (crystalline; mono-c-Si and poly-c-Si, and thin films; copper indium diselenide and cadmium telluride); the internal conductance (convective and radiative heat transfer coefficients) and their corresponding thermal resistance (series and parallel) are the end products of perturbation rather than the complex classical correlation. These results provide a short cut and reliable means of establishing the thermal characteristics of fluid pocket surrounding the semiconductor, which are very useful for the performance analysis of the photovoltaic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.