Abstract

Contributions from premotor and supplementary motor areas to reaching behavior in aging humans are not well understood. The objective of these experiments was to examine effects of perturbations to specific cortical areas on the control of unconstrained reaches against gravity by younger and older adults. Double-pulse transcranial magnetic stimulation (TMS) was applied to scalp locations targeting primary motor cortex (M1), dorsal premotor area (PMA), supplementary motor area (SMA), or dorsolateral prefrontal cortex (DLPFC). Stimulation was intended to perturb ongoing activity inthe targeted cortical region before or after a visual cue to initiate moderately paced reaches to one of three vertical target locations. Regional effects were observed in movement amplitude both early and late in the reach. Perturbation of PMA increased reach distance before the time of peak velocity to a greater extent than all other regions. Reaches showed greater deviation from a straight-line path around the time of peak velocity and greater overall curvature with perturbation of PMA and M1 relative to SMA and DLPFC. The perturbationincreased positional variability of the reach path at the time of peak velocityand the time elapsing after peak velocity. Although perturbations had stronger effects on reaches by younger subjects, this group exhibited less reach path variability at the time of peak velocity and required less time to adjust the movement trajectory thereafter. These findings support the role of PMA in visually guided reaching and suggest an age-related change in sensorimotor processing, possibly due to a loss of cortical inhibitory control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call