Abstract

We investigate the structure of the set of de Branges spaces of entire functions which are contained in a space L2(μ). Thereby, we follow a perturbation approach. The main result is a growth dependent stability theorem. Namely, assume that measures μ1 and μ2 are close to each other in a sense quantified relative to a proximate order. Consider the sections of corresponding chains of de Branges spaces C1 and C2 which consist of those spaces whose elements have finite (possibly zero) type with respect to the given proximate order. Then either these sections coincide or one is smaller than the other but its complement consists of only a (finite or infinite) sequence of spaces. Among other situations, we apply—and refine—this general theorem in two important particular situations In the proof of the main result, we employ a method used by P. Yuditskii in the context of density of polynomials. Another vital tool is the notion of the index of a chain, which is a generalisation of the index of determinacy of a measure having all power moments. We undertake a systematic study of this index, which is also of interest on its own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.