Abstract
Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9°C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.