Abstract

Manufacturing and misalignment errors are present in every optical system. Usually these errors lead to intolerable wavefront deviations and system inaccuracies if they are not characterized and taken into consideration. In the interferometric measurement of surfaces, the characterization of the interferometer aberrations plays a central role, since unknown phase contributions lead to an erroneous assessment of the test surface and therefore an incorrect estimation of the performance of an optical system. In this work, we present a method for the interferometric characterization of surfaces based on the principles of Hamilton's characteristic functions and perturbation theory. The application of the proposed method to an interferometer for the measurement of aspherical surfaces is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.