Abstract
In this paper, we study the chaotic behavior of the nonlinear Schodinger equation with a single source under external perturbations. Based on Melnikov’s theorem, we prove the existence of chaos regardless of the complexity of the perturbation signals. Numerical simulations and electronic circuit experiments are also devised to verify this phenomenon. By investigating the Lyapunov spectrum and considering chaos suppression, we analyze the evolution properties of chaos excited by perturbations with different power and frequency richness. Results show that the noise-induced chaos possesses a larger positive Lyapunov exponent (LE), implying a stronger diversity, when the power of the perturbation signal increases. The corresponding chaos is also more difficult to be controlled and a larger control strength is needed to suppress the chaos. Moreover, it is noticed that, with the same signal power, the richer in frequency, the smaller the maximum LE. However, it is more difficult to control the induced chaos when the frequency of the perturbation signal is rich, yet the control strength remains more or less the same after certain level of frequency richness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.