Abstract

A numerical investigation was conducted into a perturbation-based analysis approach for assessing the imperfection sensitivity of composite cylindrical shells buckling under compression loading. The Single Perturbation Load Analysis (SPLA) approach was applied, which uses a single lateral load to introduce a realistic, worst-case and stimulating imperfection pattern. Finite element analysis was conducted for cylinders of both monolithic composite laminate and sandwich construction, with and without small and large cutouts. It was found that using a perturbation displacement equal to the shell thickness provides a suitable technique for estimating the reduction in buckling load caused by imperfections. Predictions of buckling knockdown factors using the SPLA approach showed advantages over the use of eigenmodes as the SPLA approach provides a clear design point and does not require experimental data for calibration. The effect of small and large cutouts was analogous to the effect of small and large perturbation loads. The location of the perturbation load influenced the buckling knockdown factors for both small and large cutouts, and worst-case locations were identified for both configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.