Abstract

The eigenvector-dependent nonlinear eigenvalue problem arises in many important applications, such as the discretized Kohn–Sham equation in electronic structure calculations and the trace ratio problem in linear discriminant analysis. In this paper, we perform a perturbation analysis for the eigenvector-dependent nonlinear eigenvalue problem, which gives upper bounds for the distance between the solution to the original nonlinear eigenvalue problem and the solution to the perturbed nonlinear eigenvalue problem. A condition number for the nonlinear eigenvalue problem is introduced, which reveals the factors that affect the sensitivity of the solution. Furthermore, two computable error bounds are given for the nonlinear eigenvalue problem, which can be used to measure the quality of an approximate solution. Numerical results on practical problems, such as the Kohn–Sham equation and the trace ratio optimization, indicate that the proposed upper bounds are sharper than the state-of-the-art bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.