Abstract

Spent nuclear fuel contains heavy element fission products that must be separated for effective reprocessing for a safe and sustainable nuclear fuel cycle. 93 Zr and 99 Tc are high-yield fission products that co-transport in liquid-liquid extraction processes. Here we seek atomic-level information of this co-extraction process, as well as fundamental knowledge about ZrIV (and HfIV ) aqueous speciation in the presence of topology-directing ligands such as pertechnetate (TcO4 - ) and non-radioactive surrogate perrhenate (ReO4 - ). In this context, we show that the flat tetrameric oxyhydroxyl-cluster [MIV 4 (OH)8 (H2 O)16 ]8+ (and related polymers) is dissociated by perrhenate/pertechnetate to yield isostructural dimers, M2 (OH)2 (XO4 - )6 (H2 O)6 ⋅ 3H2 O (M=Zr/HfIV ; X=Re/TcVII ), elucidated by single-crystal X-ray diffraction. We used these model compounds to understand the pervasive 93 Zr-99 Tc coextraction with further speciation studies in water, nitric acid, and tetrabutylphosphate (TBP) -kerosene; where the latter two media are relevant to nuclear fuel reprocessing. SAXS (small angle X-ray scattering), compositional evaluation, and where experimentally feasible, ESI-MS (electrospray ionization mass spectrometry) showed that perrhenate/pertechnetate influence Zr/HfIV -speciation in water. In Zr-XO4 solvent extraction studies to simulate fuel reprocessing, we provide evidence that TcO4 - enhances extraction of ZrIV , and compositional analysis of the extracted metal-complexes (Zr-ReO4 study) is consistent with the crystallized ZrIV 2 (OH)2 (ReVII O4 - )6 (H2 O)6 ⋅dimer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call