Abstract

Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH<2) and the accumulation of sodium persulfate residuals in the GAC. In this study, we investigated the impact of chemical oxidation on the sorption characteristics of methyl-tert butyl ether (MTBE) in GAC. Loss of MTBE sorption was measured in thermally-activated persulfate regenerated GAC. The accumulation of sulfur was partially responsible for the blockage of sorption sites, but sorption loss was amplified under oxidizing and acidic conditions and attributed to the formation of acidic surface oxides and enhanced electrostatic attraction and accumulation of SO42- in GAC. Raising the pH in the GAC slurry resulted in the removal of the residual sulfate and improved MTBE sorption indicating that the mechanisms responsible for MTBE sorption loss were reversible. These results establish baseline conditions and parameters that can be used to optimize pilot- and full-scale deployment of thermally-activated persulfate regeneration of GAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.