Abstract

Developing efficient catalysts for persulfate (PS) activation is important for the potential application of sulfate-radical-based advanced oxidation process. Herein, we demonstrate single iron atoms confined in MoS2 nanosheets with dual catalytic sites and synergistic catalysis as highly reactive and stable catalysts for efficient catalytic oxidation of recalcitrant organic pollutants via activation of PS. The dual reaction sites and the interaction between Fe and Mo greatly enhance the catalytic performance for PS activation. The radical scavenger experiments and electron paramagnetic resonance results confirm and SO4− rather than HO is responsible for aniline degradation. The high catalytic performance of Fe0.36Mo0.64S2 was interpreted by density functional theory (DFT) calculations via strong metal-support interactions and the low formal oxidation state of Fe in FexMo1-xS2. FexMo1-xS2/PS system can effectively remove various persistent organic pollutants and works well in a real water environment. Also, FexMo1-xS2 can efficiently activate peroxymonosulfate, sulfite and H2O2, suggesting its potential practical applications under various circumstances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.